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Abstract
We complete the determination of the universal amplitude ratios of two-
dimensional percolation within the two-kink approximation of the form factor
approach. For the cluster size ratio, which has for a long time been elusive both
theoretically and numerically, we obtain the value 160.2, in good agreement
with the lattice estimate 162.5 ± 2 of Jensen and Ziff.

PACS numbers: 11.10.Kk, 11.55.Ds, 64.60.ah, 64.60.fd

Universal combinations of critical amplitudes represent the canonical way of encoding the
universal information about the approach to criticality in statistical mechanics [1]. While
critical exponents can be determined working at criticality, amplitude ratios characterize
the scaling region around the critical point. They carry independent information about the
universality class and their determination is in general theoretically more demanding. Field
theory is the natural framework in which to address the problem, but the usual perturbative
approach is not helpful if one has to work far below the upper critical dimension dc.

For the best-known example of a geometric phase transition, namely isotropic percolation
(dc = 6) [2], it was shown in [3] how the field theoretical computation of universal
amplitude ratios in two dimensions can be addressed non-perturbatively exploiting the fact
that percolation can be seen as the q → 1 limit of the q-state Potts model [4], and that the
latter is integrable even away from criticality, in the scaling limit for q � 4 [5]. Starting from
the exact S-matrix [5] one can compute the Potts correlation functions, and from them the
amplitude ratios, using the form factor approach [3].

This programme was completed in [3] for q = 2, 3, 4, recovering the known Ising results
and obtaining new predictions for the three- and four-state Potts model. For percolation,
however, only partial results were obtained, because the determination of some amplitudes
above the percolation threshold pc involves the solution of a functional equation, which in
[3] could not be solved for generic values of q, in particular for q = 1. In this situation, it
was observed in [3] that a simple parabolic extrapolation to q = 1 of the results obtained at
q = 2, 3, 4 produced for the percolation ratios results compatible with the available numerical
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estimates. In particular, for the ratio of cluster size amplitudes below and above pc the
extrapolated value 74 essentially coincided with the central value of the most recent estimate
then available [6].

On the other hand, the status of the numerical results for the cluster size ratio (associated
with the Potts susceptibility ratio) was at the time particularly controversial, different authors
having obtained over the years values which spanned two orders of magnitude [1]. Following
the appearance of [3], Jensen and Ziff communicated a new, very accurate lattice determination
of this ratio, essentially coinciding with the value 162.5±2 finally published in [7]. A possible
explanation for such a large discrepancy, other than the failure of the extrapolation (which
appeared to work for other ratios), was discussed in [8], but was ruled out by the full numerical
confirmation the prediction of [3, 8] for the universal ratios at q = 3 received5 in [9, 10] (see
also [11]).

In this communication we provide the only piece of analytic information missing in [3],
namely the solution of the functional equation at q = 1, and show that it leads to results for
the percolative universal ratios in complete agreement with the most recent lattice estimates.
In particular, this confirms that the only problem with the extrapolated value for the cluster
size ratio was the extrapolation itself. When comparing field theoretical and lattice results
(table 2) it must be taken into account that, with few exceptions, the former are themselves
not exact, since they are obtained truncating the spectral series for correlation functions to
the two-kink contribution. The remarkable accuracy of this two-particle approximation is,
however, well known (see e.g. the comparison with the Ising exact results in [3]), and is
further illustrated by this case.

In [3] the determination in the two-kink approximation of the low-temperature spin-spin
correlation function of the scaling q-state Potts model (q � 4) was reduced to that of a function
�q(θ) entering the two-kink form factor of the spin field. This function is characterized by
the following properties [3].

(i) It is a meromorphic function of θ whose only singularity in the strip Im θ ∈ (0, 2π) is a
simple pole at θ = iπ with residue

Resθ=iπ�q(θ) = i
q

q − 1
M, (1)

where M denotes the Potts spontaneous magnetization.
(ii) It is a solution of the functional equations

�q(θ) = �q(−θ), (2)

2 cos
πλ

3
sinh(λθ)�q(θ)= sinh(λ(iπ + θ))�q(2iπ − θ) − sinh(λ(iπ − θ))�q(2iπ + θ),

(3)

with the asymptotic behavior

�q(θ) ∼ exp

[(
2

3
λ − 1

)
θ

]
, θ → +∞, (4)

where λ parameterizes q according to the relation
√

q = 2 sin(πλ/3).

For q � 3, where the Potts scattering theory possesses no bound states, the properties (i)
and (ii) uniquely identify �q(θ), and then the spin field of the scaling Potts model6.

5 For the case q = 4, which is plagued by logarithmic corrections to scaling [12, 13], the issue of the precise
comparison between field theoretical and lattice results for the universal ratios appears still open [8, 9, 14, 15].
6 See [16, 17] for the correspondence between fields and solutions of the form factor equations in integrable field
theory.
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In [3] �q(θ) was determined only for q = 2, 3, 4, where it takes a simple form. We now
show that �1(θ) can be obtained taking a mathematical detour in the sine-Gordon model. For
the latter, which is defined by the action

ASG =
∫

d2x

(
1

2
(∂νϕ)2 + μ cos βϕ

)
, (5)

Lukyanov computed in [18] the soliton–antisoliton form factors

Fa
ε1ε2

(θ) = 〈0| eiaβϕ(0)|Aε1(θ1)Aε2(θ2)〉, εi = ±1, ε1ε2 = −1, (6)

obtaining a result that in our notations7 reads

Fa
±∓(θ) = −〈eiaβϕ〉 F0(θ)

F0(iπ)
Aa

±(θ), (7)

Aa
±(θ) = e∓ π

2ξ
(iπ−θ)[e∓2iπaIa(−θ) + Ia(θ − 2iπ)], (8)

where ξ = πβ2/(8π − β2), F0(θ) is a function on which we comment below, and Ia(θ) is
specified for real values of θ and a ∈ ( − 1

2 − π
ξ
, 1

2

)
as

Ia(θ) = C
∫ +∞

−∞

dx

2π
W

(
−x − θ

2
+ iπ

)
W

(
−x +

θ

2
+ iπ

)
e−( π

ξ
+2a)x

, (9)

with

W(θ) = − 2

cosh θ
exp

[
−2

∫ ∞

0

dt

t

sinh
(

t
2

(
1 − ξ

π

))
sinh t sinh ξ t

2π

sin2

(
t

2π
(iπ − θ)

)]
, (10)

and

C = 1

4
exp

[
−4

∫ ∞

0

dt

t

sinh2 t
4 sinh

(
t
2

(
1 − ξ

π

))
sinh t sinh ξ t

2π

]
. (11)

These results were presented in [18] within a framework known as free field representation,
which differs from the usual approach to form factors based on functional relations. Of course,
this latter approach can be adopted also for the matrix elements (7), using as input the sine-
Gordon S-matrix and the fact that the soliton is semi-local with respect to eiaβϕ , with a
semi-locality phase e2iπa . The corresponding functional equations then read [19]

Fa
ε1ε2

(θ) = ST (θ)F a
ε2ε1

(−θ) + SR(θ)F a
ε1ε2

(−θ), (12)

Fa
ε1ε2

(θ + 2iπ) = e2iπaε2Fa
ε2ε1

(−θ), (13)

where

ST (θ) = −
sinh πθ

ξ

sinh
(

π
ξ
(θ − iπ)

)S(θ), (14)

SR(θ) = −
sinh iπ2

ξ

sinh
(

π
ξ
(θ − iπ)

)S(θ), (15)

are the transmission and reflection amplitudes; the explicit form in the present notations of
S(θ) and F0(θ) can be found for example in [20], but here we only need to know that

F0(θ) = S(θ)F0(−θ), F0(θ + 2iπ) = F0(−θ). (16)

7 In particular, switching from Lukyanov’s notations to ours involves the replacements θ → −θ , ξ → ξ/π , a → βa.

3



J. Phys. A: Math. Theor. 43 (2010) 152001 Fast Track Communication

This implies in particular that (13) is automatically satisfied by (7). Since Aa
± are meromorphic

functions of θ , also Ia, as a linear combination of Aa
+ and Aa

− with entire coefficients is
meromorphic. In particular, analyticity implies that the property

Ia(θ) = Ia(−θ), (17)

which for real θ is apparent in (9), extends to the whole complex plane. Requiring (12) leads
now to the equation

2 cos

(
π2

ξ
+ 2πa

)
sinh

πθ

ξ
Ia(θ) = sinh

(
π

ξ
(iπ − ηθ)

)
Ia(2iπ − θ)

− sinh

(
π

ξ
(iπ + ηθ)

)
Ia(2iπ + θ), (18)

with η = 1. Making the identifications

ξ = π

λ
, a = −λ

2

(
1 ± 1

3

)
+ k, k ∈ Z (19)

we rewrite (18) as

2 cos
πλ

3
sinh(λθ)Ia(θ) = sinh(λ(iπ − ηθ))Ia(2iπ − θ) − sinh(λ(iπ + ηθ))Ia(2iπ + θ),

(20)

always with η = 1. On the other hand, this equation coincides with (3) when η = −1. At
q = 1 (i.e. λ = 1/2), however, the sign of η becomes immaterial and (20) exactly coincides
with the equation satisfied by �1.

The functional equation (20) has infinitely many solutions (a solution multiplied by a
2iπ -periodic function of θ is a new solution) and it remains to be seen whether (9) with the
identifications (19) and λ = 1/2 can yield the function �1 relevant for the percolation problem.

From the known asymptotic behavior (see e.g. [19]) of the form factors (7) one deduces
that Ia(θ) behaves as exp

[(
a − 1

2

)
θ
]

as θ → +∞, a result which is not obvious from (9) but
can be checked numerically. Comparing with (4) we see that Ia behaves asymptotically as �1

provided we take a = −1/6, corresponding to the lower sign and k = 0 in (19) with λ = 1/2.
The value ξ = 2π (i.e. λ = 1/2) falls in the repulsive regime of the sine-Gordon model

in which the only singularity of the form factors (7) within the strip Im θ ∈ (0, 2π) is the
annihilation pole at θ = iπ . Since F0(θ) is free of poles in the strip, the annihilation pole
must be carried by Aa

±, and then by Ia. Any other pole of Ia in the strip could not cancel
simultaneously in Aa

+ and Aa
−, and then Ia(θ)|ξ=2π possesses a single pole at θ = iπ in the

strip Im θ ∈ (0, 2π), exactly as it is the case for �q(θ) in the Potts model.
Summarizing, the functions I−1/6(θ)|ξ=2π and �1(θ) satisfy the same functional relations,

and have the same asymptotic behavior and singularity structure; then we conclude that they
coincide up to a normalization. Since we know that [19]

Resθ=iπF a
+−(θ) = i(1 − e−2iπa)〈eiaβϕ〉, (21)

we read from (7), (8) and (17) that Ia(θ) has residue i on the pole. Knowing also that the
percolative order parameter P (probability that a site belongs to an infinite cluster) is related
to the Potts magnetization as8

P = lim
q→1

q

q − 1
M, (22)

and recalling (1), we conclude that �1(θ) has residue iP on the pole, and therefore

�1(θ) = PI−1/6(θ)|ξ=2π . (23)

8 Relation (22) is written incorrectly in [3], see [8].
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The values ξ = 2π, a = −1/6 fall in the range where (9) can be used to compute �1(θ) for
real values of θ , which is sufficient for our purposes.

Near the percolation threshold the relations

S 
 
±|p − pc|−γ , (24)

ξ 
 f ±|p − pc|−ν, (25)

P 
 B(p − pc)
β, (26)

〈Nc〉
N


 A±|p − pc|2−α (27)

define the critical amplitudes for the mean cluster size, the correlation length, the order
parameter and the singular part of the mean cluster number per site, respectively; the
superscripts ± refer to9 p → p∓

c . Below we consider both the second moment correlation
length:

ξ 2
2nd = 1

4

∫
d2x|x|2gc(x)∫

d2xgc(x)
, (28)

and the true correlation length ξt defined by

gc(x) ∼ e−|x|/ξt , |x| → ∞, (29)

where gc(x) is the probability that x and the origin belong to the same finite cluster. It was
shown in [3] that, in terms of the Potts kink mass m, ξt is 1/m at p < pc and 1/2m at p > pc,
and that

A± = − 1

2
√

3
(
f +

t

)2 . (30)

Defining the amplitude combinations

R+
ξ = [α(1 − α)(2 − α)A+]1/2f +, U = 4

B2
(
f +

2nd

)2


+
, (31)

which are universal due to the scaling relations 2 − α = 2ν and 2ν = 2β + γ , (30) together
with α = −2/3 imply in particular

R+
ξt

=
[

40

27
√

3

]1/2

= 0.9248 . . . , (32)

a result recovered from a lattice computation in [21]. The result for R+
ξ2nd

in the two-kink
approximation was computed in [3] and compares quite well with the lattice estimate obtained
from the combination of the data collected in table 1.

The result (23) allows us to complete the two-kink computation of the universal ratios
involving the amplitudes f −

2nd, 
−, B. All the other necessary information was already given
in [3] and here we only recall how the results for percolation follow from those of the Potts
model when q → 1.

Consider as an example the cluster size S. This is the limit of the Potts susceptibility divided
by q − 1, and the susceptibility is in turn the integral on the plane of the connected Potts spin–
spin correlator. At T < Tc the leading large distance contribution to this correlator is produced
by a two-kink state and is multiplied by q − 1 (the number of two-kink intermediate states in
the low-temperature spectral sum). There are no other factors of q − 1 since in this phase the

9 We keep the notation of [3] where ± referred to the high/low-temperature Potts phases; we drop instead the tilde
used there on percolation amplitudes.
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Table 1. Lattice estimates of critical amplitudes for site percolation on triangular and square lattice.
The superscripts a, b indicate [22, 23], respectively.

Triangular Square

A+ −4.37a –

+ 0.0720b 0.102b

B 0.780b 0.910b

2f +
2nd 0.520b 0.520b

Table 2. Universal amplitude ratios in two-dimensional percolation. The field theory results in the
first two lines are exact; the others are obtained in the two-kink approximation. The superscripts
a, b, c, d, e indicate [6, 7, 22–24], respectively.

Field theory Lattice

A+/A− 1 1a

f +
t /f −

t 2 –
f +

2nd/f
+
t 1.001 –

f +
2nd/f

−
2nd 3.73 4.0 ± 0.5c


+/
− 160.2 162.5 ± 2d

U 2.22 2.23 ± 0.10e

R+
ξ2nd

0.926 ≈0.93a+b

spin two-kink form factor Fσ
1 (θ) is the product of �q(θ) times another function which is also

finite at q = 1 (see [3]). At T > Tc the spin–spin correlator coincides by duality with the low-
temperature disorder–disorder correlator. The latter receives the leading contribution from a
single one-kink state weighted by the squared disorder form factor

∣∣Fμ

K

∣∣2 = M
∣∣Fσ

1 (∞)
∣∣ [3].

As a consequence, due to (22), also the high-temperature Potts correlator vanishes as q − 1
in the percolation limit (the two-kink contribution behaves in the same way). Summarizing,
the factors of q − 1 can be explicitly isolated and cancel in the computation of the percolative
critical amplitudes for the cluster size. The same can be shown for the other amplitudes.

The field theoretical results for the complete list of independent10 ratios involving the
amplitudes (24)–(27) are summarized in table 2 together with the most accurate lattice
estimates. As remarked above, the comparison confirms in particular the effectiveness of
the two-particle approximated form factor results in integrable field theory.
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